## Areas in polar coordinates

## Questions

Question 1. Find the slope of the tangent line to the polar curve $r=1 / \theta$ when $\theta=\pi$.
Question 2. Sketch the polar curve $r=2+\cos (\theta / 3)$. Then set up an integral which evaluates the area of the innermost loop.

Question 3. Sketch the polar curve $r=\sin (3 \theta)$. How many "petals" does it have? Set up an integral which computes the area of one petal.

Then answer the same questions for $r=\sin (4 \theta)$.

## More problems

Problem 1. Find the area of the region underneath the polar curve $r=\theta, 2 \pi / 3 \leq \theta \leq 5 \pi / 6$, depicted in Figure 1 , in two ways:
(a) Convert to parametric equations and use methods of $\$ 10.2$.
(b) First compute the area of the region with corners $\mathrm{O}, \mathrm{B}$, and D using methods of $\$ 10.4$. Then use that to find the desired area. Hint: Think about the right triangles $\triangle \mathrm{BAO}$ and $\triangle \mathrm{DCO}$.
Check that you get the same answer. Which method do you find easier?


Figure 1

