Areas in polar coordinates

Questions

Question 1. Find the slope of the tangent line to the polar curve $r = 1/\theta$ when $\theta = \pi$.

Question 2. Sketch the polar curve $r = 2 + \cos(\theta/3)$. Then set up an integral which evaluates the area of the innermost loop.

Question 3. Sketch the polar curve $r = sin(3\theta)$. How many "petals" does it have? Set up an integral which computes the area of one petal.

Then answer the same questions for $r = \sin(4\theta)$.

More problems

Problem 1. Find the area of the region *underneath* the polar curve $r = \theta$, $2\pi/3 \le \theta \le 5\pi/6$, depicted in Figure 1, in two ways:

- (a) Convert to parametric equations and use methods of \$10.2.
- (b) First compute the area of the region with corners O, B, and D using methods of \$10.4. Then use that to find the desired area. **Hint:** Think about the right triangles \triangle BAO and \triangle DCO.

Check that you get the same answer. Which method do you find easier?

Figure 1